Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8326, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221252

RESUMO

Prolonged human-crewed missions on the Moon are foreseen as a gateway for Mars and asteroid colonisation in the next decades. Health risks related to long-time permanence in space have been partially investigated. Hazards due to airborne biological contaminants represent a relevant problem in space missions. A possible way to perform pathogens' inactivation is by employing the shortest wavelength range of Solar ultraviolet radiation, the so-called germicidal range. On Earth, it is totally absorbed by the atmosphere and does not reach the surface. In space, such Ultraviolet solar component is present and effective germicidal irradiation for airborne pathogens' inactivation can be achieved inside habitable outposts through a combination of highly reflective internal coating and optimised geometry of the air ducts. The Solar Ultraviolet Light Collector for Germicidal Irradiation on the Moon is a project whose aim is to collect Ultraviolet solar radiation and use it as a source to disinfect the re-circulating air of the human outposts. The most favourable positions where to place these collectors are over the peaks at the Moon's poles, which have the peculiarity of being exposed to solar radiation most of the time. On August 2022, NASA communicated to have identified 13 candidate landing regions near the lunar South Pole for Artemis missions. Another advantage of the Moon is its low inclination to the ecliptic, which maintains the Sun's apparent altitude inside a reduced angular range. For this reason, Ultraviolet solar radiation can be collected through a simplified Sun's tracking collector or even a static collector and used to disinfect the recycled air. Fluid-dynamic and optical simulations have been performed to support the proposed idea. The expected inactivation rates for some airborne pathogens, either common or found on the International Space Station, are reported and compared with the proposed device efficiency. The results show that it is possible to use Ultraviolet solar radiation directly for air disinfection inside the lunar outposts and deliver a healthy living environment to the astronauts.

2.
Opt Express ; 29(12): 18688-18704, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154120

RESUMO

The transmission of airborne pathogens represents a major threat to worldwide public health. Ultraviolet light irradiation can contribute to the sanification of air to reduce the pathogen transmission. We have designed a compact filter for airborne pathogen inactivation by means of UVC LED sources, whose effective irradiance is enhanced thanks to high reflective surfaces. We used ray-tracing and computational fluid dynamic simulations to model the device and to maximize the performance inside the filter volume. Simulations also show the inhibition of SARS-Cov-2 in the case of high air fluxes. This study demonstrates that current available LED technology is effective for air sanification purposes.


Assuntos
Microbiologia do Ar , COVID-19/prevenção & controle , Desinfecção/instrumentação , Desenho de Equipamento , Controle de Infecções/métodos , SARS-CoV-2 , Raios Ultravioleta , Desinfecção/métodos , Humanos , Exposição por Inalação/prevenção & controle , Pneumonia Viral/prevenção & controle
3.
Opt Express ; 20(7): 8078-92, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453479

RESUMO

LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.


Assuntos
Interferometria/instrumentação , Fotometria/instrumentação , Telescópios , Transdutores , Calibragem
4.
Opt Express ; 19(17): 16087-95, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21934971

RESUMO

In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV.

5.
Appl Opt ; 43(22): 4288-302, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15298400

RESUMO

The Layer-Oriented Simulation Tool (LOST) is a numerical simulation code developed for analysis of the performance of multiconjugate adaptive optics modules following a layer-oriented approach. The LOST code computes the atmospheric layers in terms of phase screens and then propagates the phase delays introduced in the natural guide stars' wave fronts by using geometrical optics approximations. These wave fronts are combined in an optical or numerical way, including the effects of wave-front sensors on measurements in terms of phase noise. The LOST code is described, and two applications to layer-oriented modules are briefly presented. We have focus on the Multiconjugate adaptive optics demonstrator to be mounted upon the Very Large Telescope and on the Near-IR-Visible Adaptive Interferometer for Astronomy (NIRVANA) interferometric system to be installed on the combined focus of the Large Binocular Telescope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA